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Abstract. The problem of decoupling a system of linear coupled differential equations 
without changing the order of the equations will be considered. Starting from a theorem 
on the separation of the coupled equations, we continue the investigations in the general 
case, where the conditions set up by this theorem are not satisfied, in deriving a method 
of separation of the equations in the strong coupling case. An example on a system of 
two coupled Schrodinger equations will be taken up as an illustration of this method. 

1. Introduction 

In a previous paper (Cao 1981) it has already been shown that the separation of a 
system of coupled differential equations without increasing their order is governed by 
a theorem which sets up specific conditions on the coupling terms. These conditions, 
however, induce serious restrictions on the analytical form of these coupling functions, 
which in the case of Schrodinger equations may apply only to a very small number 
of real physical problems (Cao and Van Regemorter 1978). 

It therefore seems appropriate to seek for an enlargement of the range of validity 
of this theorem in order to include more general types of problems which are frequently 
met in practice. 

Within this scope, the present paper begins with a brief presentation of previous 
results where, for the sake of simplicity, we shall confine ourselves to the case of two 
coupled differential equations with strong coupling terms. 

The essential points of the theory will be taken up in the next section where a 
formal derivation will be introduced to deal with the most general situations. 

The discussion which follows selects two interesting cases, which in fact may cover 
almost all situations encountered in practice, and where it will be shown that the 
problem of strong coupling can be handled either with a decoupling approach at a 
given order of approximation, or with its transformation to a weak coupling problem 
which is generally easier to solve. 

A concrete example will be discussed finally as an illustration of the above method. 

2. Separation of a system of two coupled equations 

As the weak coupling case presents in principle no substantial difficulties and may be 
handled by a number of conventional methods both analytically and numerically (Mott 
and Massey 1965), we shall consider in this work only the strong coupling case where 
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these conventional methods become questionable and inadequate, mostly because of 
the very slow rate of convergence of the iterated solutions. 

Consider, for example, the following system of coupled equations 

[P +fO(X)IYO(X) = B(X )Y 1 (x), P+fl(x)lYl(x) = B(x)yoix), (1) 

where as usual we shall keep the notations and conventions of earlier work (Cao 
1981), i.e., P =  Z,=l d"/dx", fl(x), fo(x), B ( x )  are assumed to be continuous and 
differentiable functions of x.  

If B ( x )  is of the same order as or larger than fi(x), we shall say by convention 
that the coupling is strong while weak coupling means the case B(x)<c f : ( x ) .  

The theorem on the separation of the equations of this system states the following. 

Theorem. System (1) may always be completely separated if and only if the quantity 
B(n) / ( f i  -fo) is independent of x .  

For the proof of this theorem, as well as its extension to the general case of a 
system of a finite number of coupled differential equations, we refer to Cao (1981). 
Furthermore, these results may also be applied to the case of non-identical terms of 
coupling, i.e. for systems such that 

[P+folYo=BY1, [P +fllY I = CYO, B f C. 

and from this basis, a construction of the solution in the general case of three or more 
equations is also possible (Cao 1982). 

The conditions set up by this theorem however give access only to a very narrow 
range of applications because the coupling functions B ( x )  must be strictly fixed by 
the quantity Af = f l  -fo. For example, in the Schrodinger case if fi = ki- li(& + l)/xz, 
i =0, 1, then B ( x )  must be of the form A/x2  etc. 

In order to enlarge these results and make them more adapted to current situations, 
we shall have to re-examine system (1) in the case where the quantity B/(fl-fo) is 
no longer independent of x as prescribed by the theorem. This means of course that 
the coupling term B ( x )  may now take any analytical form regardless of the structure 
of the functions f o  and fl. 

The basic idea which underlines the present work is that if in these conditions a 
complete separation of the equations in system (1) become impossible, we consider 
that a decisive improvement can nevertheless be achieved once the strong coupling 
problem with its inherent difficulties may be avoided and be transformed into a weak 
coupling one, for which we already have at our disposal a number of excellent 
techniques to obtain the solution. 

As we shall see in the following, it turns out that the outcome of the discussion 
goes beyond this expectation, because it will be shown that not only is the transforma- 
tion of a strong coupling problem into a weak coupling one possible, but furthermore 
in many cases, a decoupling of the equations at any given order of approximation 
may also be obtained. 

3. The general case 

Assume now that in system (1) the functions B(x) ,  f~(x), f o b )  may take any analytical 
form so that the condition B/Af independent of x is no longer satisfied. Introduce 
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then an auxiliary function C(x)  which is subjected only to the condition C/Af indepen- 
dent of x ,  i.e. 

C ( X )  = f f  (fl -fo), a constant, (2) 

and rewrite (1) in the form 

[P +foI~o = Cy1 + (B - C)y i ,  [ P + f i I ~ i = C y o + ( B  -C)YO. (3) 

We may now use the transformation 

in which a is the root of the equation 

(f1 - fda2  -4Ba - (f1 -fo) = 0, 

to diagonalise the matrix equation 

(4) 

in which 

q = C ( l  0 1  0), 9=IB-C) ( l  0 1  O). 

Define 

and let W = TY; equation (6) becomes explicitly 

As the parameter a is arbitrary and still remains at our disposal its choice wiIl reveal 
a number of interesting features which will be successively examined hereafter. 

4. Discussion 

As was said from the beginning, the strong coupling problem in the case of system 
(1) means that the function B(x)  must be larger than or of the same order as fl(x), 
fo(x), while the weak coupling one corresponds to the condition B(x) << fl ,  fo. 

Consider first a special case where Af<< B, fl ,  fo (for a system of two coupled 
Schrodinger equations this would correspond to a 'near resonance' situation) for which 
the use of the parameter a is unnecessary. In fact, if we let a + CO system (7) becomes 

[P + +( f i  + fo) + B] W+ = +A f W-, [P + +( f 1 + fo) - B ] W- = $Af W+, (8) 
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which corresponds to the replacement of the transformation T ( a )  by another one XI, 

X I = (  -1 1 l) 

On the other hand, if f l  = f o  we recover a well known result valid for any analytical 
form of B(x)  with the solution 

w* = % Y o *  Y d .  (9) 

It is also known that in many fields of physics the coupling term B ( x )  generally 
decreases at the same rate as or faster than the interaction involved in the functions 
fl,  fo, at least at large distances so that it is conventionally admitted that the equations 
become asymptotically uncoupled (see for example Burke and Seaton 197 1). 

Returning to system (7), we see that it appears in a form similar to (1) and, keeping 
the notations as closely similar as possible between (1) and (7), we write 

(10) [P + F+] W+ = NW-, [P + F-] W- = NW+ 
in which 

a Af 
2 1/2+ 

N = -  
(1+4a ) (1+4a2)1'2' 

From what was said above, we already know that system (10) cannot be separated 
because the quantity NIAF, A F  = F+ - F- is not independent of x. However, if we 
introduce a new transformation T(A) such that 

T(A)=( -(l+A) l-A 
A being the solution of the equation 

AFA2 -4NA - AF = 0, 

and diagonalise the matrix equation 

T(P++)T-'Tw = TNT-'TW, 

(11) 

(12) 

(13) 

the only cross term is given by 

K(A) = [P, A]&1 +A2)-' 
where 

A = 2N/AF*[1 +4(N/AF)2]1/2 

and [ ] means a commutator bracket. 
In order to evaluate K(A), note that the quantity NIAF is of the form 
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in which y = B/Af and where the case most frequently met in practice is y < 1. For 
completeness, we shall also discuss the case y > 1;  in fact, it will be seen that these 
two cases may be dealt with on the same footing. 

Remarking that f ( y )  is an analytical function of y in some region of the complex 
plane ( y )  with a corresponding appropriate choice of the parameter a, we may always 
choose an arbitrary point yo  in this region and have a Taylor expansion of f ( y )  around 
Yo  

f ( Y )  = f ( Y o )  + (Y - Y o ) f ( Y o )  + ( 1 / 2 N Y  - Yo)2fYYo) + . * 

or explicitly 

(16)  

From (16),  the quantity A may now be evaluated and represented by a power 
with a radius of convergence equal to 1 / 4 a  + 2 yo. 

series in terms of r, 

and 

A2=-2- 
H 3  

As yo is still arbitrary, it may be shown that if we take yo = n /a ,  n being any parameter 
>O, there always exists a corresponding value a, which makes Al = 0. 

The cross term will therefore be 

K(A)=A&(r2)+A3K(r3)+.  . . . (18)  
If we are satisfied with the first order of approximation (i.e. neglecting terms with I‘2 
or more), system (10) can now be separated by use of the transformation T ( A ) :  

[P+~(F++F-)+~(AF2+4N2)”2]Z+ = 0, 

[ P + i ( F +  +F-)-$(AF2+4N2)1’2]2- = O .  (19)  

5. Remarks 

This expansion is valid if y lies in the region 

n / f f < y < ( 8 n + l ) / a ;  

for example if we let n = 1, the acceptable values of y will be 

0.188 < y < 1.696 

etc. For larger values of y,  larger values of n must be chosen. 
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Consider now the case yo = 0 which corresponds to the choice n = 0. It may be 
verified that the expansions (16) and (17) become 

oc 

f o ( ~ ) = a  +(1+4a2)y (-1)"+'(4ay)", 
n =o 

(16bi 

i17b) 2 112- 
A00 = 2a - (1 +4a2)"', A01 = -2(1 +4a2)1'2[(1 + 4 a  ) 2 ~ 1 ,  

A02 = 2( 16a - 8a: ' + 4a - 1). 

Expansion (16b) is valid if y < 1/4a and the coefficient Aol is practically equal to 
zero if a > 5 .  This means that y must be c0.05. These results may be easily checked 
by a direct expansion of the quantity f d y )  = (a - y)/( l+4ay) .  

If we are interested in the second order of approximation then the term A 2 K ( r 2 )  
must be taken into account in the second member of (19). But this does not present 
a real problem for us, because the above procedure may be repeated again to separate 
the equations as we did for the first approximation. This second separation operation 
necessitates however the introduction of a second parameter p etc. 

Hence, at the cost of some algebraic manipulations, it is seen that the equations 
may always, in principle, be separated at any order of approximation. 

Finally, the solution Y of system (1) can be recovered with the inverse transfor- 
mation 

Z = T ( A )  W, W = T ( a )  Y, Y = T-' (u)T- ' (A)z .  

6. An example 

Among the various types of problems which may be dealt with by the previous methods 
and which will be considered later, we select for the moment the case of two coupled 
differential equations with coupling terms such that the conditions prescribed by the 
theorem are not fulfilled. This problem originates from a work of Lane and Lin (1964) 
who investigated the dipole effect of an electron-atom interaction. In a schematic 
model of the two states approximation, they obtained from partial wave analysis two 
coupled Schrodinger equations in which they assumed that the diagonal terms of the 
potential function matrix (Uoo, U1l) tend to zero exponentially (Seaton 1961) and 
that the cross terms ( UOl, Ulo) have the form A/x2 .  The coupled equations are then 

They solved this system in the near resonance region ( k o = k l )  by use of the 
resonance distortion method (RDM) which consists of two steps. In the first step, exact 
resonance (ko  = kl) is assumed, making the separation of the equations possible, 

d' 1(1+ 1)*A 
( z - k i -  X 2 )Y*=O, Y * = t ( Y o * Y l ) ,  (21) 

and the functions Y* may be expressed in terms of spherical Bessel functions. 
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being simply expressed as a combination of spherical Bessel and Hankel functions. 
Note also that the parameter a can be 'eliminated from these equations but we shall 
need it in the inverse transformation to obtain the original solution Y ( Y  = 
T-' (a)T-'(A)Z). 

7. Conclusion 

A number of improvements in the theory of coupled differential equations have been 
obtained in this work and will be briefly summarised in the following. 

Starting from the theorem which governs the separation of coupled equations, 
investigations are developed in order to achieve some release on the strictness of the 
conditions on the coupling functions prescribed by this theorem. In doing so, the 
range of applications of the theory is decisively enlarged, giving way to promising 
perspectives in the treatment of the many channel problem. 

The discussion on the two cases which were selected and which already cover a 
large spectrum of situations in practice reveals that the strong coupling problem may 
indeed almost always be converted into a weak coupling one. 

Moreover, a complete separation of the equations may also be performed in 
principle at any order of approximation. 

More generally speaking, the results obtained here are useful in the sense that 
they can set up a more rational base to approach the problem of coupled differential 
equations, provide a means to examine this problem from a qualitative point of view, 
alleviating then the burden of the computational work. 
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